金屬鹵鈣鈦礦太陽(yáng)能電池因其優(yōu)異的性能在光伏領(lǐng)域引起了廣泛的關(guān)注。目前已經(jīng)實(shí)現(xiàn)了高達(dá)26.1%的認(rèn)證效率,該效率能夠與單晶硅電池的效率媲美。然而,差的長(zhǎng)期工作穩(wěn)定性對(duì)鈣鈦礦光伏技術(shù)的商業(yè)化提出了嚴(yán)峻的挑戰(zhàn)。器件中每一個(gè)功能層及其界面與電池的長(zhǎng)期穩(wěn)定性密切相關(guān)。其中,正式p-i-n電池的埋底界面對(duì)制備高效穩(wěn)定鈣鈦礦太陽(yáng)能電池至關(guān)重要。
鑒于此,陳江照教授和易健宏教授團(tuán)隊(duì)開(kāi)發(fā)了一種多齒配體增強(qiáng)的螯合策略,通過(guò)管理界面缺陷和應(yīng)力來(lái)提高埋底界面的穩(wěn)定性。采用雙(2,2,2-三氟乙基)(甲氧羰基甲基)膦酸酯(BTP)修飾埋底界面。BTP中的C=O、P=O和兩個(gè)-CF3官能團(tuán)協(xié)同鈍化SnO2表面和鈣鈦礦薄膜底表面的缺陷。而且,BTP修飾有助于減輕界面殘余拉應(yīng)力,促進(jìn)鈣鈦礦結(jié)晶,降低界面能壘。該多齒配體調(diào)控策略適用于不同的鈣鈦礦組分,具有很好的普適性。由于顯著的減少了非輻射復(fù)合和顯著提高的界面接觸,BTP修飾的器件實(shí)現(xiàn)了24.63%的功率轉(zhuǎn)換效率(PCE),這是空氣環(huán)境制備的器件報(bào)道的最高效率之一。未封裝的BTP修飾的器件在10-20%RH環(huán)境中老化3000小時(shí)以上保持初始效率的98.6%。未封裝的BTP修飾的器件加熱老化1728小時(shí)后保持初始效率的84.2%。本工作為通過(guò)設(shè)計(jì)多齒螯合配體分子增強(qiáng)埋底界面穩(wěn)定性提供見(jiàn)解與指導(dǎo)。
陳江照教授長(zhǎng)期從事新能源材料與器件研究,共發(fā)表SCI論文104篇,總引用8300余次,H指數(shù)為34。其中,以第一或通訊作者發(fā)表SCI論文82篇,包括1篇Nat. Energy、7篇Adv. Mater.、1篇Energy Environ. Sci.、2篇Angew. Chem. Int. Ed.、4篇Adv. Energy Mater.、4篇Adv. Funct. Mater.、3篇ACS Energy Lett.、1篇Nano-Micro Lett.、2篇Nano Lett.、2篇Nano Energy等,ESI高被引論文19篇,ESI熱點(diǎn)論文4篇,單篇論文最高引用490余次,單篇引用超過(guò)100次的論文有16篇,1篇論文入選ACS Energy Letters亮點(diǎn)文章。申請(qǐng)發(fā)明專利12項(xiàng),其中獲授權(quán)7項(xiàng)。作為主編出版中文專著4部。主持國(guó)家自然科學(xué)基金面上、兵團(tuán)重點(diǎn)領(lǐng)域科技攻關(guān)計(jì)劃項(xiàng)目、重慶市自然科學(xué)基金面上、重慶市留學(xué)人員回國(guó)創(chuàng)業(yè)創(chuàng)新支持計(jì)劃重點(diǎn)項(xiàng)目等科研項(xiàng)目8項(xiàng)。獲得2023年全球前2%頂尖科學(xué)家、新疆天池英才特聘教授、昆明理工大學(xué)拔尖人才(三層次)、重慶大學(xué)百人、第二屆沙坪壩區(qū)十佳科技青年、2023川渝科技學(xué)術(shù)大會(huì)優(yōu)秀論文特等獎(jiǎng)、重慶市科協(xié)崗位創(chuàng)新?tīng)?zhēng)先行動(dòng)三等獎(jiǎng)、第三屆川渝科技學(xué)術(shù)大會(huì)優(yōu)秀論文二等獎(jiǎng)、2022年Wiley威立中國(guó)開(kāi)放科學(xué)高貢獻(xiàn)作者獎(jiǎng)、2022年Wiley威立中國(guó)開(kāi)放科學(xué)年度作者獎(jiǎng)等獎(jiǎng)勵(lì)與榮譽(yù)10余項(xiàng)。在國(guó)內(nèi)外重要學(xué)術(shù)會(huì)議作邀請(qǐng)報(bào)告近20次。擔(dān)任國(guó)際/國(guó)內(nèi)學(xué)術(shù)會(huì)議大會(huì)主席(1次)、大會(huì)秘書長(zhǎng)(1次)和分會(huì)場(chǎng)主席(4次)。擔(dān)任Nature、Nat. Rev. Phys.、Joule等40余本國(guó)際知名學(xué)術(shù)期刊的審稿人。擔(dān)任Nano-Micro Lett.、Carbon Energy、SmartMat、Nano Mater. Sci.、Sci. China-Mater.、eScience和Carbon Neutrality期刊的青年編委及先進(jìn)儲(chǔ)能材料與技術(shù)兵團(tuán)重點(diǎn)實(shí)驗(yàn)室學(xué)術(shù)委員會(huì)委員。
Figure 1.(a) Sn 3d, (b) O 1s, (c) F 1s and (d) P 2p XPS spectra of the SnO2and SnO2/BTP films. (e)19F NMR, and (f-h)13C NMR spectra of the SnO2solutions without and with BTP. (i) TheBinding energies (Eb) between the OVdefects in SnO2in contact with theBTPmolecule. Optimized structure of SnO2surface containing OVdefects.
Figure 2.(a) Optimized structures of FAPbI3surface containing iodine vacancy defects with BTP. (b) Pb 4f, (c) I 3d, (d) P 2p, (e) O 1s and (f) F 1s XPS spectra of the pure BTP, PbI2and PbI2+BTP films. (g) FTIR spectra of the perovskite, BTP+perovskite, and pure BTP films in the range of 1000-1900 cm-1. (h) The relaxed structure of BTP molecules bridging SnO2substrate and perovskite through chemical bonds.
Figure 3.AFM imagesof the SnO2films (a) without and (b) with BTP. (c) XRDpatterns and (d) XRD intensity and FWHM for the control and BTP-modified perovskite films. GIXRD spectra with different ω values (0.5~1.5) of the (e) control, and (f) BTP-modified perovskite films.
Figure 4.Top-view SEM images of the (a) control and (b) BTP-modified perovskite films. The scale bar is 1 μm.AFM images of the perovskite films (c) without and (d) with BTP modification. PL mapping images of the (e) glass/perovskite and (f) glass/BTP/perovskite films. (g) SSPL and (h) TRPL spectra of the glass/without and with BTP/perovskite films measured from the glass side. PVSK stands for the perovskite layer. SCLC for the electron-only devices with the structure of the (i) ITO/SnO2/perovskite/PCBM/BCP/Ag and (j) ITO/SnO2/BTP/perovskite/PCBM/BCP/Ag. (k) SSPL and (l) TRPL spectra of the perovskite films deposited on the SnO2substrates without and with BTP modification.
Figure 5.(a) TPV and (b) TPC decay curves of the PSCs without and with BTP. (c) The light-intensity dependence ofVOCcurves for the control and BTP-modified devices. (d) Energy level diagram of calculated SnO2and SnO2/BTP in comparison with the energy levels of ITO, perovskite films, Spiro-OMeTAD (HTL) and Au. (e) Schematic of the buried interface modified by polydentate ligand BTP.
Figure 6.(a)J-Vcurves of the champion control and BTP modified devices. (b)J-Vcurves of the devices without and with TFE. (c)J-Vcurves of the devices without and with MAC. (d)J-Vcurves of the devices without and with PA. (e)J-Vcurves of best-performing devices without and with BTP using FA0.85MA0.15PbI3composition.(f) The stabilized photocurrent density of best-performing devices without and with BTP using Rb0.02(FA0.95Cs0.05)0.98PbI2.91Br0.03Cl0.06composition. (g) The stability of the PSCs without and with BTP heated at 65 ℃ in the dark in an N2-filled glovebox. (h) The stability for the control and BTP-modified devices under a relative humidity (RH) of 10-20% in the dark. (i) The PCE evolution for the control and BTP-modified devices under one sun illumination of 100 mW/cm2provided by white light LED at room temperature in the N2-filled glovebox.
文章鏈接:
Baibai Liu#, Qian Zhou#, Yong Li#, Yu Chen, Dongmei He*, Danqing Ma, Xiao Han, Ru Li*, Ke Yang, Yingguo Yang, Shirong Lu, Xiaodong Ren*, Zhengfu Zhang, Liming Ding, Jing Feng, Jianhong Yi*, Jiangzhao Chen*. Polydentate ligand reinforced chelating to stabilize buried interface toward high-performance perovskite solar cells.Angewandte Chemie International Edition2024,e202317185.
https://onlinelibrary.wiley.com/doi/10.1002/anie.202317185
聲明:化學(xué)加刊發(fā)或者轉(zhuǎn)載此文只是出于傳遞、分享更多信息之目的,并不意味認(rèn)同其觀點(diǎn)或證實(shí)其描述。若有來(lái)源標(biāo)注錯(cuò)誤或侵犯了您的合法權(quán)益,請(qǐng)作者持權(quán)屬證明與本網(wǎng)聯(lián)系,我們將及時(shí)更正、刪除,謝謝。 電話:18676881059,郵箱:gongjian@huaxuejia.cn